Školní experimentální systém ISES

Internetové Školní Experimentální Studio

LU13 - Elektromagnetický oscilátor

Pomůcky

  • Systém ISES, moduly: ampérmetr, capacity-meter, kondenzátor na destičce,
  • dvě cívky na uzavřeném jádře, zdroj elektrického napětí (např. PS – 302A), sada rezistorů, přepínač, 7 spojovacích vodičů,
  • soubor: oscila.imc.

Úkoly

  1. Capacity-metrem určit kapacitu kondenzátoru
  2. Pozorovat tlumené kmity elektromagnetického oscilátoru. Určit periodu, frekvenci a konstantu útlumu.
  3. Vypočítat indukčnost, odpor a frekvenci netlumených kmitů, ztráty energie.
  4. Pozorovat kmity při zvětšeném tlumení. Určit potřebné veličiny.
  5. Najít nejmenší odpor, při kterém kmity již nenastávají.

Teorie

Měření budeme provádět podle obr. 1.

Při přepnutí do pravé polohy se kondenzátor odpojí od zdroje a vybíjí se přes připojenou cívku. Elektrostatická energie kondenzátoru se přeměňuje na energii magnetického pole cívky a přírůstek vnitřní energie zařazených odporů (Jouleovo teplo). V obvodu vznikají tlumené elektromagnetické kmity. Proud závisí na čase podle rovnice:

,

kde se nazývá konstanta útlumu, je úhlová frekvence kmitů, L je indukčnost cívky, R je celkový odpor v obvodu. Frekvence netlumených kmitů by byla dána Thomsonovým vztahem: , energie magnetického pole cívky je rovna .

Nastavení:
oscila.imc: čas 0,1 s, 1000 Hz, trigger -5 mA až +5 mA s náběžnou hranou na hladině 0,5, panel č.1 – graf I=f(t) proud I od -5 mA do +5 mA.

Provedení

1. úkol

Učitelský počítač musí být spuštěný. Poklepáním na „Software G“ si zpřístupníme potřebný soubor a spustíme ISES. Capacity metrem určíme kapacitu kondenzátoru jako průměr z deseti odečtených hodnot.

2., 3. úkol

Založíme nový experiment a načteme do konfigurace „oscila“. Na ampérmetru nastavíme 10 mA s nulou uprostřed a zasuneme do kanálu A. Obvod zapojíme podle obr. 1.

Zdroj napětí zatím nezapínáme!

Požádáme vyučujícího o kontrolu zapojení!

Napětí zdroje nastavíme 1 V1,5 V a spustíme měření.

Bezprostředně po spuštění měření se nic neděje, protože je nastaven tzv. TRIGGER. To znamená, že počítač čeká na překročení určité úrovně proudu, aby začal měřit. Přepínač dáme do levé polohy (viz obr. 1), čímž se nabije kondenzátor. Po přepnutí do pravé polohy vzniknou elektromagnetické kmity, v obvodu naměříme střídavý proud s klesající amplitudou. Měli bychom získat podobný průběh:


Tlumené kmity s aproximovanou exponenciální funkcí

Z grafu odečteme časy (periody), po kterých se opakují maxima proudu a zapíšeme do tabulky č. 1.

Nástrojem pro odečet frekvence určíme z pěti prvních kmitů frekvenci a zapíšeme ji do tabulky č. 2. Označíme křížkem prvních pět maxim, aproximujeme exponenciální funkcí a určíme konstantu útlumu δ pro tabulku č. 2.

Znovu nabijeme kondenzátor a vybijeme přes cívku. Celkově měříme pět zdařilých experimentů a provedeme výpočty pro vyplnění tabulky č. 2.

4. úkol

Do místa označeného v obrázku 1 jako X zařadíme sériově rezistor o odporu 50 Ω. Tím se zvýší v obvodu tlumení. Provedeme pět nových zdařilých experimentů a vyplníme tab. č. 3. V čem se tabulky shodují a v čem liší?

5. úkol

Do místa X zařazujeme různé rezistory až se nám podaří najít nejmenší odpor Rkrit, při kterém již kmity nenastávají:

Hodnotu takového odporu se pokusíme také vypočítat.

Doplňující (dobrovolné) úkoly:

  1. O kolik se v průběhu jednoho experimentu zvýšila vnitřní energie rezistorů?
  2. Ze vztahu odvoďte rozměr konstanty útlumu.
  3. Po kolika kmitech klesne maximum proudu na 5 % původní hodnoty?

Protokol

Název: Elektromagnetický oscilátor
Pomůcky:
Teorie:
Vypracování:
Kapacita kondenzátoru určená capacity-metrem:   C = . , . . μF

Tabulka č. 1: Měření periody

  1 2 3 4 5  
T
ms
. .. .. .. .. . T = ( . . , . ± . , . ) ms   δT = . %

Tabulka č. 2: Kmity bez přídavného tlumení

Experiment č. 1 2 3 4 5  
f
Hz
. .. .. .. .. . f = ( . . ± . ) Hz   δf = . , . %
δ
s-1
. . , .. . , .. . , .. . , .. . , . δ = ( . . , . ± . , . ) s-1   δδ = . , . %
ω
s-1
. . .. . .. . .. . .. . . ω = ( . . . ± . ) s-1   δω = . , . %
L
H
. , . . .. , . . .. , . . .. , . . .. , . . . L = ( . , . . . ± . , . . . ) H   δL = . , . %
R
Ω
. .. .. .. .. . R = ( . . ± . ) Ω   δR = . , . %
Frekvence netlumených kmitů:     f0 = . . Hz

Během 1 kmitu se na vnitřní energii přeměňuje:   . . %

Tabulka č. 3: Kmity při zvýšeném tlumení (odpor 50 Ω)

Experiment č. 1 2 3 4 5  
f
Hz
. .. .. .. .. . f = ( . . ± . ) Hz   δf = . , . %
δ
s-1
. . , .. . , .. . , .. . , .. . , . δ = ( . . , . ± . , . ) s-1   δδ = . , . %
ω
s-1
. . .. . .. . .. . .. . . ω = ( . . . ± . ) s-1   δω = . , . %
L
H
. , . . .. , . . .. , . . .. , . . .. , . . . L = ( . , . . . ± . , . . . ) H   δL = . , . %
R
Ω
. . .. . .. . .. . .. . . R = ( . . ± . ) Ω   δR = . , . %

Frekvence netlumených kmitů k tabulce č. 3:     f0 = . . Hz

Během 1 kmitu se na vnitřní energii přeměňuje:   . . % Odvození Rkrit:

Vypočtená hodnota Rkrit = . . . Ω

Doplňující (dobrovolné) úkoly:

  1. Během jednoho experimentu se na vnitřní energii (Jouleovo teplo) přemění . . %
  2. Odvození rozměru konstanty útlumu:
  3. Maximální proud klesne na 5 % původní hodnoty po . kmitech.

Závěr:
Diskutujeme proměnlivost periody tlumených kmitů, frekvenci tlumených a netlumených kmitů při nižším a vyšším tlumení, konstantu útlumu při nižším a vyšším tlumení. Porovnáme indukčnost cívky a odpor při nižším a vyšším tlumení.

Porovnáme Rkrit určený experimentálně a teoreticky.

Zapíšeme, kolik procent energie se změní na Jouleovo teplo během jednoho experimentu, po kolika kmitech klesne maximum proudu na 5 % původní hodnoty.

Výsledky

Kapacita kondenzátoru určená capacity-metrem:   C = 6,85 μF

Tabulka č. 1: Měření periody

  1 2 3 4 5  
T
ms
1515141413 T = ( 14,2 ± 0,6 ) ms   δT = 4 %

Tabulka č. 2: Kmity bez přídavného tlumení

Experiment č. 1 2 3 4 5  
f
Hz
6970707070 f = ( 70 ± 0 ) Hz   δf = 0 %
δ
s-1
36,135,435,935,835,2 δ = ( 35,7 ± 0,3 ) s-1   δδ = 0,8 %
ω
s-1
434440440440440 ω = ( 439 ± 2 ) s-1   δω = 0,5 %
L
H
0,7700,7490,7490,7490,749 L = ( 0,753 ± 0,007 ) H   δL = 0,9 %
R
Ω
5653545453 R = ( 54 ± 1 ) Ω   δR = 1,9 %

Frekvence netlumených kmitů:     f0 = 70 Hz

Během 1 kmitu se na vnitřní energii přeměňuje ,   tj. 64 %.

Tabulka č. 3: Kmity při zvýšeném tlumení (odpor 50 Ω)

Experiment č. 1 2 3 4 5  
f
Hz
6769707169 f = ( 69 ± 1 ) Hz   δf = 1,4 %
δ
s-1
68,468,067,065,069,6 δ = ( 67,6 ± 1,3 ) s-1   δδ = 1,9 %
ω
s-1
421427440446427 ω = ( 432 ± 9 ) s-1   δω = 2,1 %
L
H
0,8020,7810,7370,7190,780 L = ( 0,764 ± 0,029 ) H   δL = 3,8 %
R
Ω
1091069993109 R = ( 103 ± 6 ) Ω   δR = 5,8 %

Frekvence netlumených kmitů k tabulce č. 3:     f0 = 70 Hz

Během 1 kmitu se na vnitřní energii přeměňuje ,   tj. 86 %.

Kmity nevzniknou, jestliže ve vzorci pro ω bude pod odmocninou záporné číslo. Z toho plyne podmínka pro kritickou hodnotu odporu . Z tab. č. 2 vychází Rkrit = 663 Ω.

Experimentálně se jeví, že k překmitnutí již nedochází při hodnotě tlumícího odporu 500 Ω. Přičteme-li odpor 54 Ω z tabulky č. 1, vychází Rkrit = 554 Ω.

Závěr:

Doplňující (dobrovolné) úkoly:
  1. Em = 6 μJ.
  2. = s-1
  3. ... Po šesti kmitech klesne maximum proudu pod 5 % původní hodnoty.

Ukázky měřicích obrazovek

Úkol č 2: Tlumené kmity elektromagnetického oscilátoru (oscila.imc)
Úkol č 5: Tlumené kmity elektromagnetického oscilátoru s tlumícím odporem 500 Ω (oscila.imc)
Webmaster: Jiří Ryzner, poslední aktualizace: 21.7.2014